Java通过动态规划设计股票买卖最佳时机

发布时间:2022-10-21 10:11

给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。

示例:

图片[1] - Java通过动态规划设计股票买卖最佳时机 - 尘心网

链接:https://leetcode.cn/problems/best-time-to-buy-and-sell-stock

动态规划

因为对每一天只有两个状态,买入股票和卖出股票,因此定义 dp[][2]

1. dp[i][2] 数组表示的含义 :

dp[i][0] 表示第 i 天买入股票能获得的最大利润,dp[i][1] 表示第一天卖出股票能获得的最大利润

2. 状态转移方程:

dp[i][0] = max(dp[i-1][0], -prices[i])

解释: 第 i 天对买入股票状态,只有两种操作,买入股票或者不买股票。因此,第 i 天能获得的最大利润为 第 i 天不买股票(dp[i-1][0]) 和 第 i 天买入股票(-prices[i]) 的利润的最大值。

dp[i][1] = max(dp[i-1][1], dp[i-1][0] + prices[i])

解释: 第 i 天对卖出股票,只有两种操作,卖出股票或者不卖出股票。因此,第 i 天能获得的最大利润为 第 i 天卖出股票 (dp[i-1][0] + prices[i])和 第 i 天不卖出股票 的利润的最大值 (dp[i-1][1]

3. 初始化

第 0 天买入,得到的利润为 -price[0]

第 0 天卖出,得到的利润为 0

dp[0][0] = -price[0]
dp[0][1] = 0

代码:

// 买卖股票的最佳时机
public int maxProfit(int[] prices) {
// dp 表示当天能获得的最大利润
int[][] dp = new int[prices.length][2]; // 对每一天来说,就两个状态,一个是买入,一个是卖出
dp[0][0] = -prices[0]; // 第一天买入
dp[0][1] = 0; // 第一天卖出
for(int i=1; i<prices.length; i++){
dp[i][0] = Math.max(dp[i-1][0], -prices[i]);
dp[i][1] = Math.max(dp[i-1][1], dp[i-1][0] + prices[i]);
}
return dp[prices.length-1][1];
}

变式一: 可以重复买入,卖出

   // 买卖股票的最佳时机2 —— 可以多次买入和卖出,但是注意每次只能持有一张股票,就是必须是 买 - 卖 - 买 - 卖 - 买 - 卖 ....这种顺序
public int maxProfit2(int[] prices) {
// 本题与上题的区别就在于状态转移方程不同 -- 本题可以用之前得到的利润 (即 dp[i-1][1],上一轮卖出后剩下的钱) 再去买入,而上一题必须 0-price[i] 买入
// dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1]-prices[i]); ---- 买入股票能得到的最大利润状态转移方程有变化
int[][] dp = new int[prices.length][2];
dp[0][0] = -prices[0];
dp[0][1] = 0;
for(int i=1; i<prices.length; i++){
dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] - prices[i]); // 当天可能执行股票买入
dp[i][1] = Math.max(dp[i-1][1], dp[i-1][0] + prices[i]); // 当他可能执行股票卖出
}
return dp[prices.length-1][1];
}

变式二:可以执行买入卖出操作两次

   // 买卖股票的最佳时机3 —— 本题与上一题的区别在于,本题只能执行两次买入、卖出操作
public int maxProfit3(int[] prices) {
// 每次可执行的操作状态为 ,第一次买入、第一次卖出、第二次买入、第二次卖出,因此 dp 定义为
int[][] dp = new int[prices.length][4];
dp[0][0] = -prices[0];
dp[0][1] = 0;
dp[0][2] = -prices[0];
dp[0][3] = 0;
for(int i=1; i<prices.length; i++){
dp[i][0] = Math.max(dp[i-1][0], -prices[i]);
dp[i][1] = Math.max(dp[i-1][1], dp[i-1][0] + prices[i]);
dp[i][2] = Math.max(dp[i-1][2], dp[i-1][1] - prices[i]);
dp[i][3] = Math.max(dp[i-1][3], dp[i-1][2] + prices[i]);
}
return dp[prices.length-1][3];
}

变式三:可以执行买卖操作 K 次

// 买卖股票的最佳时期 —— 最多进行 K 次交易
public int maxProfit(int k, int[] prices) {
// 就是两次交易的升级版
int[][] dp = new int[prices.length][2*k+1]; // 奇数表示买入,偶数表示卖出
// 初始化
for(int j=1; j<2*k; j+=2){
dp[0][j] = -prices[0];
}
for(int i=1; i<prices.length; i++){
for(int j=0; j<2*k-1; j+=2){
dp[i][j+1] = Math.max(dp[i-1][j+1], dp[i-1][j] - prices[i]);
dp[i][j+2] = Math.max(dp[i-1][j+2], dp[i-1][j+1] + prices[i]);
}
}
return dp[prices.length-1][2*k];
}

变式四:含冷冻期

   // 买卖股票含冷冻期
public int maxProfit(int[] prices) {
// 一共四种状态 买入 卖出(早就卖出保存卖出态,当天卖出) 冷冻
int dp[][] = new int[prices.length][4];
// 初始化
dp[0][0] = -prices[0];
for(int i=1; i<prices.length; i++){
// 买入状态 —— 前一天就是买入状态 + 前一天是卖出状态今天买入了 + 前一天是冷冻状态今天买入了
dp[i][0] = Math.max(dp[i-1][0], Math.max(dp[i-1][3]-prices[i], dp[i-1][2]-prices[i]) );
// 卖出态1 —— 前一天就是卖出态1 + 前一天是冷冻态
dp[i][1] = Math.max(dp[i-1][1], dp[i-1][3]);
// 卖出态2 —— 当天卖出了
dp[i][2] = dp[i-1][0] + prices[i];
// 冷冻态 —— 前一天是卖出态2
dp[i][3] = dp[i-1][2];
}
return Math.max(dp[prices.length-1][1], Math.max(dp[prices.length-1][2], dp[prices.length-1][3]));
}

变式五:含手续费

// 买卖股票的最佳时机,含手续费
public int maxProfit2(int[] prices, int fee) {
int[][] dp = new int[prices.length][2];
// 初始化
dp[0][0] = -prices[0] - fee;
for(int i=1; i<prices.length; i++){
dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] - prices[i] - fee);
dp[i][1] = Math.max(dp[i-1][1], dp[i-1][0] + prices[i]);
}
return dp[prices.length-1][1];
}

文档下载:Java通过动态规划设计股票买卖最佳时机.doc文档

THE END
喜欢就支持一下吧